Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Invest Radiol ; 57(1): 71-76, 2022 01 01.
Article in English | MEDLINE | ID: covidwho-20239065

ABSTRACT

PURPOSE: The aim of this study was to investigate the feasibility of measuring early changes in serum cytokine levels after intravenous diethylenetriaminepentaacetic acid (Ca-DTPA) chelation in patients manifesting either gadolinium deposition disease (GDD) or gadolinium storage condition (GSC) and the possible usefulness of this method in further research. METHODS: Four patients with recent-onset GDD (≤1 year) and 2 patients with long-standing GSC (4 and 9 years) underwent chelation with intravenous bolus administration of Ca-DTPA. Multiple blood draws were performed to measure serum cytokines: at T = 0 (before Ca-DTPA injection) and 1, 5, 10, 30, 60 minutes, and 24 hours after Ca-DTPA injection. Patients rated the severity of GDD symptom flare at 24 hours. The 24-hour urine Gd amounts were measured prechelation and for the 24 hours after chelation. Serum samples were analyzed blind to whether patients had GDD or GSC but with knowledge of the time points characterizing each sample. RESULTS: Urine samples for both GDD and GSC patients showed increases in Gd postchelation. All GDD patients experienced flare reactions postchelation; the 2 GSC patients did not. Two cytokines, EGF and sCD40L, peaked at 30 minutes postchelation in at least 4 of the 6 participants. Three cytokines, ENA78/CXCL5, EOTAXIN/CCL11, and LEPTIN, peaked at 24 hours in at least 4 of the 6 participants. Two participants were high outliers for a large number of cytokines across time points. No clear distinction between GDD and GSC was apparent from the cytokine patterns, although differences were present. CONCLUSIONS: This pilot study describes precise temporal resolution (in the range of minutes) after a cytokine-inciting event. Select cytokines exhibited peak values at different time points. At this preliminary stage of investigation, peak cytokine release seems to reflect the amount of Gd mobilized rather than the severity of the patient symptomatic reaction. Too few subjects were studied to support statistical analysis between GDD and GSC groups, although differences were observed through visual data analysis.


Subject(s)
Gadolinium , Organometallic Compounds , Contrast Media , Cytokines , Gadolinium DTPA , Humans , Magnetic Resonance Imaging , Pentetic Acid , Pilot Projects
2.
Rev Neurol ; 75(2): 45-48, 2022 07 16.
Article in Spanish | MEDLINE | ID: covidwho-20238926

ABSTRACT

INTRODUCTION: COVID-19, the disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to grow all over the world since december of 2019. Although the main clinical manifestation is pulmonary disease, neurological manifestations are a prominent and increasingly recognized feature of the disease. The Acute Disseminated Encephalomyelitis (ADEM) is a rare autoimmune disorder, most commonly triggered by a viral infection. There are a few case reports of ADEM associated with COVID-19, almost all of them associated pulmonary disease. We report the case of a young patient with diagnosis of ADEM with SARS-CoV-2 infection without clinical respiratory symptoms. CASE REPORT: A 20-year-old woman with no relevant medical history was brought to the emergency department with a progressive confusional state lasted for 7 days. Family reported the development of smell and taste deficit since two weeks before the onset of neurological symptoms. There were no complaints of pulmonary symptoms. At admission, she was drowsy and disoriented. Left homonymous hemianopsia and an ipsilateral Babinski sign was identified. A brain magnetic resonance image was done showing multiple hyperintense bilateral, asymmetric patchy and poorly marginated lesions with gadolinium enhancement. She was SARS-CoV-2 PCR positive on nasopharyngeal swab. Intravenous high-dose glucocorticoids were administered with marked clinical improvement. CONCLUSION: ADEM is an extremely uncommon complication of SARS-CoV-2infection. Acute disseminated encephalomyelitis should be considered a potentially treatable cause of encephalopathy or multifocal neurological deficits in COVID-19 patients, even in the absence of respiratory symptoms.


TITLE: Encefalomielitis aguda diseminada asociada a infección por el SARS-CoV-2 sin afectación respiratoria.Introducción. COVID-19 (coronavirus disease-2019) es la enfermedad secundaria a la infección por el coronavirus de tipo 2 o SARS-CoV-2 (severe acute respiratory syndrome coronavirus type 2), que se ha constituido como pandemia desde diciembre de 2019. Si bien la afectación más frecuente y grave es la pulmonar, las complicaciones neurológicas secundarias a la COVID-19 son cada vez más reconocidas. La encefalomielitis aguda diseminada (EMAD) es una enfermedad autoinmune poco frecuente, clásicamente secundaria a una infección viral previa o concomitante. Existen informes de EMAD asociada a la COVID-19, casi todos con afectación respiratoria asociada. Presentamos el caso de una mujer joven diagnosticada con EMAD secundaria a la infección por el SARS-CoV-2 sin afectación respiratoria. Caso clínico. Mujer de 20 años que consultó por cuadro de desorientación y alteración conductual de una semana de evolución. Destaca en la historia la presencia de anosmia y sensación febril dos semanas antes del inicio de los síntomas neurológicos. En el examen físico destacó somnolencia, desorientación, hemianopsia homónima izquierda y síndrome piramidal ipsilateral. Se realizó una resonancia magnética encefálica que mostró múltiples lesiones inflamatorias desmielinizantes bihemisféricas de la sustancia blanca sugerentes de EMAD. La reacción en cadena de la polimerasa del SARS-CoV-2 en aspirado nasofaríngeo resultó positiva. Se descartaron otras causas de lesiones inflamatorias. Recibió esteroides con excelente respuesta. Conclusión. La EMAD es una complicación extremadamente rara en pacientes con COVID-19 que debe considerarse como una causa tratable de encefalopatía y/o déficits neurológicos multifocales en pacientes con infección activa o reciente por SARS-CoV-2 con o sin manifestaciones respiratorias.


Subject(s)
COVID-19 , Encephalomyelitis, Acute Disseminated , Adult , COVID-19/complications , Contrast Media , Encephalomyelitis, Acute Disseminated/diagnosis , Encephalomyelitis, Acute Disseminated/etiology , Female , Gadolinium , Humans , SARS-CoV-2 , Young Adult
3.
Herz ; 48(3): 195-205, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2324676

ABSTRACT

The causes of cardiac inflammation during the COVID-19 pandemic are manifold and complex, and may have changed with different virus variants and vaccinations. The underlying viral etiology is self-evident, but its role in the pathogenic process is diverse. The view of many pathologists that myocyte necrosis and cellular infiltrates are indispensable for myocarditis does not suffice and contradicts the clinical criteria of myocarditis, i.e., a combination of serological evidence of necrosis based on troponins or MRI features of necrosis, edema, and inflammation based on prolonged T1 and T2 times and late gadolinium enhancement. The definition of myocarditis is still debated by pathologists and clinicians. We have learned that myocarditis and pericarditis can be induced by the virus via different pathways of action such as direct viral damage to the myocardium through the ACE2 receptor. Indirect damage occurs via immunological effector organs such as the innate immune system by macrophages and cytokines, and then later the acquired immune system via T cells, overactive proinflammatory cytokines, and cardiac autoantibodies. Cardiovascular diseases lead to more severe courses of SARS-CoV­2 disease. Thus, heart failure patients have a double risk for complicated courses and lethal outcome. So do patients with diabetes, hypertension, and renal insufficiency. Independent of the definition, myocarditis patients benefitted from intensive hospital care, ventilation, if needed, and cortisone treatment. Postvaccination myocarditis and pericarditis affect primarily young male patients after the second RNA vaccine. Both are rare events but severe enough to deserve our full attention, because treatment according to current guidelines is available and necessary.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Male , SARS-CoV-2 , Autoimmunity , Pandemics , Contrast Media , Gadolinium/therapeutic use , Inflammation , Pericarditis/therapy , Arrhythmias, Cardiac , Cytokines , Vaccination
4.
Chemosphere ; 333: 138885, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2327429

ABSTRACT

The COVID-19 pandemic resulted in increasing the usage of iodinated contrast media (ICM), and thus an increase in the prevalence of ICM-contaminated wastewater. While ICM is generally safe, this has the potential to be problematic because as medical wastewater is treated and disinfected, various ICM-derived disinfection byproducts (DBPs) may be generated and released into the environment. However, little information was available about whether ICM-derived DBPs are toxic to aquatic organisms. In this study, the degradation of three typical ICM (iopamidol, iohexol, diatrizoate) at initial concentration of 10 µM and 100 µM in chlorination and peracetic acid without or with NH4+ was investigated, and the potential acute toxicity of treated disinfected water containing potential ICM-derived DBPs on Daphnia magna, Scenedesmus sp. and Danio rerio was tested. The degradation results suggested that only iopamidol was significantly degraded (level of degradation >98%) by chlorination, and the degradation rate of iohexol and diatrizoate were significantly increased in chlorination with NH4+. All three ICM were not degraded in peracetic acid. The toxicity analysis results indicate that only the disinfected water of iopamidol and iohexol by chlorination with NH4+ were toxic to at least one aquatic organism. These results highlighted that the potential ecological risk of ICM-contained medical wastewater by chlorination with NH4+ should not be neglected, and peracetic acid may be an environment-friendly alternative for the disinfection of wastewater containing ICM.


Subject(s)
COVID-19 , Iodine Compounds , Scenedesmus , Water Pollutants, Chemical , Animals , Humans , Iohexol/toxicity , Iohexol/analysis , Iopamidol , Disinfection/methods , Diatrizoate/analysis , Daphnia , Zebrafish , Peracetic Acid , Wastewater/toxicity , Pandemics , Contrast Media/toxicity , Contrast Media/analysis , Water/analysis , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Halogenation
5.
Sci Immunol ; 8(83): eadh3455, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2312885

ABSTRACT

Rare immune-mediated cardiac tissue inflammation can occur after vaccination, including after SARS-CoV-2 mRNA vaccines. However, the underlying immune cellular and molecular mechanisms driving this pathology remain poorly understood. Here, we investigated a cohort of patients who developed myocarditis and/or pericarditis with elevated troponin, B-type natriuretic peptide, and C-reactive protein levels as well as cardiac imaging abnormalities shortly after SARS-CoV-2 mRNA vaccination. Contrary to early hypotheses, patients did not demonstrate features of hypersensitivity myocarditis, nor did they have exaggerated SARS-CoV-2-specific or neutralizing antibody responses consistent with a hyperimmune humoral mechanism. We additionally found no evidence of cardiac-targeted autoantibodies. Instead, unbiased systematic immune serum profiling revealed elevations in circulating interleukins (IL-1ß, IL-1RA, and IL-15), chemokines (CCL4, CXCL1, and CXCL10), and matrix metalloproteases (MMP1, MMP8, MMP9, and TIMP1). Subsequent deep immune profiling using single-cell RNA and repertoire sequencing of peripheral blood mononuclear cells during acute disease revealed expansion of activated CXCR3+ cytotoxic T cells and NK cells, both phenotypically resembling cytokine-driven killer cells. In addition, patients displayed signatures of inflammatory and profibrotic CCR2+ CD163+ monocytes, coupled with elevated serum-soluble CD163, that may be linked to the late gadolinium enhancement on cardiac MRI, which can persist for months after vaccination. Together, our results demonstrate up-regulation in inflammatory cytokines and corresponding lymphocytes with tissue-damaging capabilities, suggesting a cytokine-dependent pathology, which may further be accompanied by myeloid cell-associated cardiac fibrosis. These findings likely rule out some previously proposed mechanisms of mRNA vaccine--associated myopericarditis and point to new ones with relevance to vaccine development and clinical care.


Subject(s)
Antineoplastic Agents , COVID-19 , Myocarditis , Humans , Myocarditis/etiology , SARS-CoV-2 , Leukocytes, Mononuclear , COVID-19 Vaccines/adverse effects , Contrast Media , COVID-19/prevention & control , Gadolinium , Killer Cells, Natural , Cytokines
6.
Eur Radiol ; 33(6): 3867-3877, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2312112

ABSTRACT

OBJECTIVE: COVID-19 infection is a systemic disease with various cardiovascular symptoms and complications. Cardiac MRI with late gadolinium enhancement is the modality of choice for the assessment of myocardial involvement. T1 and T2 mapping can increase diagnostic accuracy and improve further management. Our study aimed to evaluate the different aspects of myocardial damage in cases of COVID-19 infection using cardiac MRI. METHODS: This descriptive retrospective study included 86 cases, with a history of COVID-19 infection confirmed by positive RT-PCR, who met the inclusion criteria. Patients had progressive chest pain or dyspnoea with a suspected underlying cardiac cause, either by an abnormal electrocardiogram or elevated troponin levels. Cardiac MRI was performed with late contrast-enhanced (LGE) imaging, followed by T1 and T2 mapping. RESULTS: Twenty-four patients have elevated hsTnT with a median hsTnT value of 133 ng/L (IQR: 102 to 159 ng/L); normal value < 14 ng/L. Other sixty-two patients showed elevated hsTnI with a median hsTnI value of 1637 ng/L (IQR: 1340 to 2540 ng/L); normal value < 40 ng/L. CMR showed 52 patients with acute myocarditis, 23 with Takotsubo cardiomyopathy, and 11 with myocardial infarction. Invasive coronary angiography was performed only in selected patients. CONCLUSION: Different COVID-19-related cardiac injuries may cause similar clinical symptoms. Cardiac MRI is the modality of choice to differentiate between the different types of myocardial injury such as Takotsubo cardiomyopathy and infection-related cardiomyopathy or even acute coronary syndrome secondary to vasculitis or oxygen-demand mismatch. KEY POINTS: • It is essential to detect early COVID-related cardiac injury using different cardiac biomarkers and cardiac imaging, as it has a significant impact on patient management and outcome. • Cardiac MRI is the modality of choice to differentiate between the different aspects of COVID-related myocardial injury.


Subject(s)
COVID-19 , Myocarditis , Takotsubo Cardiomyopathy , Humans , Retrospective Studies , Contrast Media , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging/methods , Myocarditis/complications , Myocarditis/diagnostic imaging , Predictive Value of Tests , Magnetic Resonance Imaging, Cine/adverse effects
7.
ANZ J Surg ; 93(6): 1599-1603, 2023 06.
Article in English | MEDLINE | ID: covidwho-2320301

ABSTRACT

BACKGROUND: The COVID-19 pandemic led to a global shortage of iodinated contrast media (ICM) in early 2022. ICM is used in more than half of the computed tomography of the abdomen and pelvis (CTAP) performed to diagnose an acute abdomen (AA). In response to the shortage, the RANZCR published contrast-conserving recommendations. This study aimed to compare AA diagnostic outcomes of non-contrast CTs performed before and during the shortage. METHODS: A single-centre retrospective observational cohort study of all adult patients presenting with an AA who underwent a CTAP was conducted during the contrast shortage period from May to July 2022. The pre-shortage control comparison group was from January to March 2022; key demographics, imaging modality indication and diagnostic outcomes were collected and analysed using SPSS v27. RESULTS: Nine hundred and sixty-two cases met the inclusion criteria, of which n = 502, 52.2% were in the shortage period group. There was a significant increase of 464% in the number of non-contrast CTAPs performed during the shortage period (P < 0.001). For the six AA pathologies, only n = 3, 1.8% of non-contrast CTAPs had equivocal findings requiring further imaging with a contrast CTAP. Of the total CTs performed, n = 464, 48.2% were negative. CONCLUSION: This study showed that when non-contrast CTs are selected appropriately, they appear to be non-inferior to contrast-enhanced CTAPs in diagnosing acute appendicitis, colitis, diverticulitis, hernia, collection, and obstruction. This study highlights the need for further research into utilizing non-contrast scans for assessing the AA to minimize contrast-associated complications.


Subject(s)
Abdomen, Acute , Appendicitis , COVID-19 , Adult , Humans , Abdomen, Acute/diagnostic imaging , Retrospective Studies , Pandemics , COVID-19/epidemiology , Tomography, X-Ray Computed/methods , Appendicitis/diagnostic imaging , Contrast Media/adverse effects , COVID-19 Testing
9.
Medicine (Baltimore) ; 101(51): e32286, 2022 Dec 23.
Article in English | MEDLINE | ID: covidwho-2311749

ABSTRACT

The sudden contrast dye shortage, precipitated by a temporary forced closure of healthcare plant, has limited the supply of iodinated contrast media to Australia. Furthering the impact of the coronavirus disease 2019 pandemic, this new crisis has increased burden on the radiology system. Lessons from the strategies applied during the shortage should be used as building blocks as safeguards for the future. A pragmatic approach to education and training is required in an ever-changing environment. Our relationships between medical specialties and manufacturers are paramount to maintaining an effective workflow. An ongoing commitment to a strong workforce will be the backbone to overcome another challenge in these uncertain times.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Contrast Media/adverse effects , Delivery of Health Care , Workforce
10.
Eur J Radiol ; 164: 110853, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2309331

ABSTRACT

PURPOSE: Covid-19 related lockdowns have resulted in a shortage of iodinated contrast media (ICM) in 2022. Health care providers have reacted with implementing conservation strategies to stay operational without compromising patient care. Although articles describing the implemented Interventions have been published, possible chances of the shortage have not yet been mentioned in the literature. METHODS: We conducted a literature search in PubMed and Google Scholar, and analysed the background, interventions, and possible benefits of low-dose ICM regimens. RESULTS: We included 22 articles dealing with "ICM shortage" for the analysis. The delivery bottlenecks in the USA and Australia led to two different countermeasures, 1. reduction of the number of contrast-enhanced image-guided examinations and 2. reduction of the (single) ICM dose. Interventions from both groups have resulted in significant reduction of ICM usage; however, group 1 has contributed more to overall ICM reduction. As benefit of the ICM reduction, we revealed an increased safety for patients at risk (e.g. hypersensitivity reactions, contrast-induced acute kidney injury, thyroid toxic effects). CONCLUSION: The ICM shortage of 2022 has forced health care providers to implement conservation strategies to stay operational. Although there were already proposals for dose reduction before the corona pandemic and the associated supply bottlenecks, this situation led to the use of a reduced amount of contrast agent on a large scale. This presents a good opportunity to reconsider protocols and the use of contrast-enhanced imaging in general for future practice as it offers chances and advantages regarding costs, environmental impact, and patient safety.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions , Iodine Compounds , Humans , Contrast Media/adverse effects , Communicable Disease Control , Iodine Compounds/adverse effects
11.
Cardiovasc Intervent Radiol ; 46(3): 327-336, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2301473

ABSTRACT

PURPOSE: The aim of this study was to analyze the impact of using intra-procedural pre-ablation contrast-enhanced CT prior to percutaneous thermal ablation (pre-ablation CECT) of colorectal liver metastases (CLM) on local outcomes. MATERIALS AND METHODS: This retrospective analysis of a prospectively collected liver ablation registry included 144 consecutive patients (median age 57 years IQR [49, 65], 60% men) who underwent 173 CT-guided ablation sessions for 250 CLM between October 2015 and March 2020. In addition to oncologic outcomes, technical success was retrospectively evaluated using a biomechanical deformable image registration software for 3D-minimal ablative margin (3D-MAM) quantification. Bayesian regression was used to estimate effects of pre-ablation CECT on residual unablated tumor, 3D-MAM, and local tumor progression-free survival (LTPFS). RESULTS: Pre-ablation CECT was acquired in 71/173 (41%) sessions. Residual unablated tumor was present in one (0.9%) versus nine tumors (6.6%) ablated with versus without using pre-ablation CECT, respectively (p = 0.024). Pre-ablation CECT use decreased the odds of residual disease on first follow-up by 78% (CI95% [5, 86]) and incomplete ablation (3D-MAM ≤ 0 mm) by 58% (CI95% [13, 122]). The odds ratio for residual unablated tumor for larger CLM was lower when pre-ablation CECT was used (odds ratio 1.0 with pre-ablation CECT vs. 2.52 without). Pre-ablation CECT use was not associated with improvements on LTPFS. CONCLUSIONS: Pre-ablation CECT is associated with improved immediate outcomes by significantly reducing the incidence of residual unablated tumor and by mitigating the risk of incomplete ablation for larger CLM. We recommend performing baseline intra-procedural pre-ablation CECT as a standard imaging protocol. LEVEL OF EVIDENCE: Level 3 (retrospective cohort study).


Subject(s)
Catheter Ablation , Colorectal Neoplasms , Liver Neoplasms , Male , Humans , Middle Aged , Female , Retrospective Studies , Contrast Media , Bayes Theorem , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Liver Neoplasms/pathology , Tomography, X-Ray Computed/methods , Colorectal Neoplasms/pathology , Catheter Ablation/methods , Treatment Outcome
12.
J Clin Ultrasound ; 51(4): 613-621, 2023 May.
Article in English | MEDLINE | ID: covidwho-2301433

ABSTRACT

INTRODUCTION: Cardiac injury is commonly reported in COVID-19 patients, resulting associated to pre-existing cardiovascular disease, disease severity, and unfavorable outcome. Aim is to report cardiac magnetic resonance (CMR) findings in patients with myocarditis-like syndrome during the acute phase of SARS-CoV-2 infection (AMCovS) and post-acute phase (cPACS). METHODS: Between September 2020 and January 2022, 39 consecutive patients (24 males, 58%) were referred to our department to perform a CMR for the suspicion of myocarditis related to AMCovS (n = 17) and cPACS (n = 22) at multimodality evaluation (clinical, laboratory, ECG, and echocardiography). CMR was performed for the assessment of volume, function, edema and fibrosis with standard sequences and mapping techniques. CMR diagnosis and the extension and amount of CMR alterations were recorded. RESULTS: Patients with suspected myocarditis in acute and post-COVID settings were mainly men (10 (59%) and 12 (54.5%), respectively) with older age in AMCovS (58 [48-64]) compared to cPACS (38 [26-53]). Myocarditis was confirmed by CMR in most of cases: 53% of AMCovS and 50% of cPACS with negligible LGE burden (3 [IQR, 1-5] % and 2 [IQR, 1-4] %, respectively). Myocardial infarction was identified in 4/17 (24%) patients with AMCovS. Cardiomyopathies were identified in 12% (3/17) and 27% (6/22) of patients with AMCovS and cPACS, including DCM, HCM and mitral valve prolapse. CONCLUSIONS: In patients with acute and post-acute COVID-19 related suspected myocarditis, CMR improves diagnostic accuracy characterizing ischemic and non-ischemic injury and unraveling subclinical cardiomyopathies.


Subject(s)
COVID-19 , Cardiomyopathies , Myocarditis , Male , Humans , Female , Myocarditis/complications , Myocarditis/diagnostic imaging , COVID-19/complications , Predictive Value of Tests , SARS-CoV-2 , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Contrast Media
13.
Int J Cardiovasc Imaging ; 39(4): 821-830, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2301369

ABSTRACT

The coronavirus disease of 2019 (COVID-19)-related myocardial injury is an increasingly recognized complication and cardiac magnetic resonance imaging (MRI) has become the most commonly used non-invasive imaging technique for myocardial involvement. This study aims to assess myocardial structure by T2*-mapping which is a non-invasive gold-standard imaging tool for the assessment of cardiac iron deposition in patients with COVID-19 pneumonia without significant cardiac symptoms. Twenty-five patients with COVID-19 pneumonia and 20 healthy subjects were prospectively enrolled.Cardiac volume and function parameters, myocardial native-T1, and T2*-mapping were measured. The association of serum ferritin level and myocardial mapping was analyzed. There was no difference in terms of cardiac volume and function parameters. The T2*-mapping values were lower in patients with COVID-19 compared to controls (35.37 [IQR 31.67-41.20] ms vs. 43.98 [IQR 41.97-46.88] ms; p < 0.0001), while no significant difference was found in terms of native-T1 mapping value(p = 0.701). There was a positive correlation with T2*mapping and native-T1 mapping values (r = 0.522, p = 0.007) and negative correlation with serum ferritin values (r = - 0.653, p = 0.000), while no correlation between cardiac native-T1 mapping and serum ferritin level. Negative correlation between serum ferritin level and T2*-mapping values in COVID-19 patients may provide a non-contrast-enhanced alternative to assess tissue structural changes in patients with COVID-19. T2*-mapping may provide a non-contrast-enhanced alternative to assess tissue alterations in patients with COVID-19. Adding T2*-mapping cardiac MRI in patients with myocardial pathologies would improve the revealing of underlying mechanisms. Further in vivo and ex vivo animal or human studies designed with larger patient cohorts should be planned.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Predictive Value of Tests , Magnetic Resonance Imaging/methods , Myocardium/pathology , Magnetic Resonance Spectroscopy , Ferritins , Magnetic Resonance Imaging, Cine/methods , Contrast Media
14.
Urol Pract ; 10(3): 271-277, 2023 05.
Article in English | MEDLINE | ID: covidwho-2298469

ABSTRACT

INTRODUCTION: In April 2022, GE Healthcare announced a COVID-19-related interruption in iohexol manufacturing, leading to an international iodinated contrast shortage. The shortage greatly impacted urological practice, highlighting the value of alternative contrast agents and imaging/procedure alternatives. These alternatives are reviewed in this work. METHODS: A review of existing literature describing the use of alternative contrast agents, alternative imaging procedures, and contrast conservation strategies in urological care was performed using the PubMed database. The review was not performed systematically. RESULTS: Older iodinated contrast agents such as ioxaglate and diatrizoate can replace iohexol for intravascular imaging in patients without renal impairment. These agents, along with gadolinium-based agents such as Gadavist, have been used intraluminally for urological procedures and diagnostic imaging. Several lesser-known imaging and procedure alternatives are described and include air contrast pyelography, contrast-enhanced ultrasound, voiding urosonography, and low tube voltage CT urography. Conservation strategies include contrast dose reductions and use of contrast management devices for contrast vial splitting. CONCLUSIONS: The COVID-19-related iohexol shortage caused significant hardship for urological care internationally, leading to delayed contrasted imaging studies and urological procedures. Alternative contrast agents, imaging/procedure alternatives, and conservation strategies are reviewed in this work with the goal of equipping the urologist to mitigate the current iodinated contrast shortage and to prepare in the event of a future shortage.


Subject(s)
COVID-19 , Iohexol , Humans , Contrast Media , Urologists , Diatrizoate
15.
Radiology ; 307(3): e220788, 2023 05.
Article in English | MEDLINE | ID: covidwho-2304416

ABSTRACT

HISTORY: A 44-year-old previously healthy man with a 9-month history of progressive cognitive decline, depression, urinary incontinence, and inability to perform tasks of daily living presented to the emergency department with worsening cognitive and neuropsychiatric symptoms. He had become more distressed, and his family noticed him departing the house without closing doors, leaving water faucets running, and sending his children to school on Sundays. History taken from the patient's wife revealed that his brother had passed away in his late 30s after a slowly progressing functional and cognitive decline over the course of 5 years. No further detailed family history could be obtained. The review of systems was negative; he had no prior medical, psychiatric, or surgical history; and he denied any history of recent travel, camping, hiking, or vaccination. The patient was not taking any dietary supplements, nor was he taking any over-the-counter or prescription medication. Examination revealed vital signs were within normal limits. Neurocognitive assessment revealed a conscious, coherent, and alert patient with impaired memory and concentration. He showed poor attention, depressed mood, and restricted affect. He was unable to spell the word world forward, nor was he able to understand a request to spell it backward. The rest of the physical and neurologic examination revealed no abnormalities. Extensive laboratory work-up was conducted and included the following: toxicology screening; screening for HIV-1, HIV-2, and syphilis treponemal antibodies; COVID-19 polymerase chain reaction; and measurement of B1 and B12 levels. The results of screening were negative. Cerebrospinal fluid (CSF) assays, including CSF oligoclonal bands and CSF flow cytometry, revealed values within normal limits. CT of the brain without intravenous contrast material was performed in the emergency department to rule out acute intracranial abnormality (Fig 1). Multiplanar multisequence MRI of the brain without and with intravenous contrast material was ordered for further assessment (Figs 2-4). CT images of chest, abdomen, and pelvis were unremarkable (images not shown).


Subject(s)
COVID-19 , Mental Disorders , Humans , Male , Child , Adult , Contrast Media , Brain , Magnetic Resonance Imaging
16.
PLoS One ; 18(3): e0282394, 2023.
Article in English | MEDLINE | ID: covidwho-2287689

ABSTRACT

BACKGROUND: Long-term symptoms are frequent after coronavirus disease 2019 (COVID-19). We studied the prevalence of post-acute myocardial scar on cardiac magnetic resonance imaging (CMR) in patients hospitalized due to COVID-19 and its association with long-term symptoms. MATERIALS AND METHODS: In this prospective observational single-center study, 95 formerly hospitalized COVID-19 patients underwent CMR imaging at the median of 9 months after acute COVID-19. In addition, 43 control subjects were imaged. Myocardial scar characteristic of myocardial infarction or myocarditis were noted from late gadolinium enhancement images (LGE). Patient symptoms were screened using a questionnaire. Data are presented as mean ± standard deviation or median (interquartile range). RESULTS: The presence of any LGE was higher in COVID-19 patients (66% vs. 37%, p<0.01) as was the presence of LGE suggestive of previous myocarditis (29% vs. 9%, p = 0.01). The prevalence of ischemic scar was comparable (8% vs. 2%, p = 0.13). Only two COVID-19 patients (7%) had myocarditis scar combined with left ventricular dysfunction (EF <50%). Myocardial edema was not detected in any participant. The need for intensive care unit (ICU) treatment during initial hospitalization was comparable in patients with and without myocarditis scar (47% vs. 67%, p = 0.44). Dyspnea, chest pain, and arrhythmias were prevalent in COVID-19 patients at follow-up (64%, 31%, and 41%, respectively) but not associated with myocarditis scar on CMR. CONCLUSIONS: Myocardial scar suggestive of possible previous myocarditis was detected in almost one-third of hospital-treated COVID-19 patients. It was not associated with the need for ICU treatment, greater symptomatic burden, or ventricular dysfunction at 9 months follow-up. Thus, post-acute myocarditis scar on COVID-19 patients seems to be a subclinical imaging finding and does not commonly require further clinical evaluation.


Subject(s)
COVID-19 , Heart Injuries , Myocarditis , Humans , Myocarditis/complications , Contrast Media , Cicatrix/complications , Ventricular Function, Left , COVID-19/complications , Gadolinium , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Heart Injuries/complications , Magnetic Resonance Imaging, Cine/methods , Predictive Value of Tests
17.
Kardiol Pol ; 81(5): 463-471, 2023.
Article in English | MEDLINE | ID: covidwho-2261775

ABSTRACT

BACKGROUND: COVID-19 is a great medical challenge as it provokes acute respiratory distress and has pulmonary manifestations and cardiovascular (CV) consequences. AIMS: This study compared cardiac injury in COVID-19 myocarditis patients with non-COVID-19 myocarditis patients. METHODS: Patients who recovered from COVID-19 were scheduled for cardiovascular magnetic resonance (CMR) owing to clinical myocarditis suspicion. The retrospective non-COVID-19 myocarditis (2018-2019) group was enrolled (n = 221 patients). All patients underwent contrast-enhanced CMR, the conventional myocarditis protocol, and late gadolinium enhancement (LGE). The COVID study group included 552 patients at a mean (standard deviation [SD]) age of 45.9 (12.6) years. RESULTS: CMR assessment confirmed myocarditis-like LGE in 46% of the cases (68.5% of the segments with LGE <25% transmural extent), left ventricular (LV) dilatation in 10%, and systolic dysfunction in 16% of cases. The COVID-19 myocarditis group showed a smaller median (interquartile range [IQR]) LV LGE (4.4% [2.9%-8.1%] vs. 5.9% [4.4%-11.8%]; P <0.001), lower LV end-diastolic volume (144.6 [125.5-178] ml vs. 162.8 [136.6-194] ml; P <0.001), limited functional consequence (left ventricular ejection fraction, 59% [54.1%-65%] vs. 58% [52%-63%]; P = 0.01), and a higher rate of pericarditis (13.6% vs. 6%; P = 0.03) compared to non-COVID-19 myocarditis. The COVID-19-induced injury was more frequent in septal segments (2, 3, 14), and non-COVID-19 myocarditis showed higher affinity to lateral wall segments (P <0.01). Neither obesity nor age was associated with LV injury or remodeling in subjects with COVID-19 myocarditis. CONCLUSIONS: COVID-19-induced myocarditis is associated with minor LV injury with a significantly more frequent septal pattern and a higher pericarditis rate than non-COVID-19 myocarditis.


Subject(s)
COVID-19 , Myocarditis , Pericarditis , Humans , Middle Aged , Myocarditis/etiology , Myocarditis/complications , Contrast Media , Stroke Volume , Gadolinium , Ventricular Function, Left , Retrospective Studies , Magnetic Resonance Imaging, Cine/methods , COVID-19/complications , Myocardium/pathology , Magnetic Resonance Spectroscopy , Predictive Value of Tests
18.
Environ Int ; 173: 107868, 2023 03.
Article in English | MEDLINE | ID: covidwho-2276167

ABSTRACT

Marine ecosystems are exposed to a multitude of stresses, including emerging metals as Rare Earth Elements. The management of these emerging contaminants represents a significant environmental issue. For the past three decades, the increasing medical use of gadolinium-based contrast agents (GBCAs) has contributed to their widespread dispersion in hydrosystems, raising concerns for ocean conservation. In order to control GBCA contamination pathways, a better understanding of the cycle of these elements is needed, based on the reliable characterization of fluxes from watersheds. Our study proposes an unprecedented annual flux model for anthropogenic gadolinium (Gdanth) based on GBCA consumption, demographics and medical uses. This model enabled the mapping of Gdanth fluxes for 48 European countries. The results show that 43 % of Gdanth is exported to the Atlantic Ocean, 24 % to the Black Sea, 23 % to the Mediterranean Sea and 9 % to the Baltic Sea. Together, Germany, France and Italy contribute 40 % of Europe's annual flux. Our study was therefore able to identify the current and future major contributors to Gdanth flux in Europe and identify abrupt changes related to the COVID-19 pandemic.


Subject(s)
COVID-19 , Gadolinium , Humans , Gadolinium/analysis , Ecosystem , Pandemics , Mediterranean Sea , Contrast Media
19.
Ren Fail ; 45(1): 2178821, 2023 Dec.
Article in English | MEDLINE | ID: covidwho-2256906

ABSTRACT

Contrast-induced acute kidney injury (CI-AKI), which occurs after the use of iodinated contrast media, has become the third leading cause of hospital-acquired acute kidney injury (AKI). It is associated with prolonged hospitalization and increased risks of end-stage renal disease and mortality. The pathogenesis of CI-AKI is unclear and effective treatments are lacking. By comparing different post-nephrectomy times and dehydration times, we constructed a new, short-course CI-AKI model using dehydration for 24 h two weeks after unilateral nephrectomy. We found that the low-osmolality contrast media iohexol caused more severe renal function decline, renal morphological damage, and mitochondrial ultrastructural alterations compared to the iso-osmolality contrast media iodixanol. The shotgun proteomics based on Tandem Mass Tag (TMT) was used to conduct proteomics research on renal tissue in the new CI-AKI model, and 604 distinct proteins were identified, mainly involving complement and coagulation cascade, COVID-19, PPAR signalling pathway, mineral absorption, cholesterol metabolism, ferroptosis, staphylococcus aureus infection, systemic lupus erythematosus, folate biosynthesis, and proximal tubule bicarbonate reclamation. Then, using parallel reaction monitoring (PRM), we validate 16 candidate proteins, of which five were novel candidates (Serpina1, Apoa1, F2, Plg, Hrg) previously unrelated to AKI and associated with an acute response as well as fibrinolysis. The pathway analysis and 16 candidate proteins may help to discover new mechanisms in the pathogenesis of CI-AKI, allowing for early diagnosis and outcome prediction.


Subject(s)
Acute Kidney Injury , Proteomics , Animals , Rats , Acute Kidney Injury/chemically induced , Acute Kidney Injury/diagnosis , Contrast Media/adverse effects , Dehydration/pathology , Kidney
20.
Pediatr Cardiol ; 44(5): 1108-1117, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2285032

ABSTRACT

There have been reports of myocarditis following vaccination against COVID-19. We sought to describe cardiac magnetic resonance (CMR) findings among pediatric patients. Retrospective review at a large academic center of patients clinically diagnosed with post-vaccine myocarditis (PVM) undergoing CMR. Data collected included parametric mapping, ventricular function, and degree of late gadolinium enhancement (LGE). Post-processing strain analysis was performed using feature tracking. Strain values, T1/T2 values, and ventricular function were compared to age- and gender-matched controls with viral myocarditis using a Wilcoxon Signed Rank test. Among 12 patients with presumed PVM, 11 were male and 11 presented after the second vaccination dose, typically within 4 days. All presented with chest pain and elevated troponin. 10 met MRI criteria for acute myocarditis. All had LGE typically seen in the lateral and inferior walls; only five had prolonged T1 values. 10 met criteria for edema based on skeletal muscle to myocardium signal intensity ratio and only 5 had prolonged T2 mapping values. Patients with PVM had greater short-axis global circumferential and radial strain, right ventricle function, and cardiac output when compared to those with viral myocarditis. Patients with PVM have greater short-axis global circumferential and radial strains compared to those with viral myocarditis. LGE was universal in our cohort. Signal intensity ratios between skeletal muscle and myocardium may be more sensitive in identifying edema than T2 mapping. Overall, the impact on myocardial strain by CMR is less significant in PVM compared to more classic viral myocarditis.


Subject(s)
COVID-19 , Myocarditis , Humans , Male , Child , Female , Myocarditis/diagnostic imaging , Myocarditis/etiology , COVID-19 Vaccines/adverse effects , Contrast Media , Predictive Value of Tests , Gadolinium , Magnetic Resonance Imaging , Myocardium/pathology , Magnetic Resonance Spectroscopy , Retrospective Studies , Vaccination , Magnetic Resonance Imaging, Cine , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL